Первая модель биокомпьютера с механизмом из пластмассы была создана в 1999 году И. Шапиро из Вейцмановского института естественных наук. Она являлась аналогом «молекулярной машины» в живой клетке, которая, используя в качестве посредника РНК, собирала белковые молекулы согласно информации с ДНК.

Далее, в 2001 г. тому же ученому удалась реализация вычислительного устройства на основе ДНК, которое действовало практически без вмешательства человека. «Система имитирует машину Тьюринга — одну из фундаментальных концепций вычислительной техники» [10]. Машина Тьюринга последовательно считывает данные и принимает решения о дальнейших действиях в зависимости от значения этих данных. В теории, она способна на решение любой вычислительной задачи. Таким же образом работают и молекулы ДНК, «распадаясь и рекомбинируясь в соответствии с информацией, закодированной в цепочках химических соединений» [10].

Установка, разработанная в Вейцмановском институте, кодирует входные данные и программы в молекулах ДНК, состоящих из двух цепей, и смешивает их с двумя специально подобранными ферментами. Ферменты выполняют здесь функцию аппаратного обеспечения, а молекулы ДНК – программного. «Один фермент расщепляет молекулу ДНК с входными данными на отрезки разной длины в зависимости от содержащегося в ней кода. А другой рекомбинирует эти отрезки в соответствии с их кодом и кодом молекулы ДНК с программой. Процесс продолжается вдоль входной цепи, и, когда доходит до конца, получается выходная молекула, соответствующая конечному состоянию системы» [10].

Представленный механизм может использоваться для решения самых различных задач. И хотя скорость обработки ДНК на уровне отдельных молекул происходит во много раз медленнее, чем в кремниевых процессорах, здесь возможен массовый параллелизм.[2] Так, в одной пробирке одновременно может происходить до триллиона процессов, и при потреблении несравнимо меньшей мощности в единицы нановатт может выполняться миллиард операций в секунду.

В 2002 году компания Olympus Optical выпустила ДНК-компьютер, предназначенный для совершения генетического анализа. Этот компьютер имеет две основные составляющие: электронную и молекулярную, первая из которых осуществляет химические реакции между молекулами ДНК, проводит поиск вычислений, а вторая отвечает за обработку информации и анализ полученных результатов.

Нужно сказать, что биологические компьютеры могут использоваться не только для вычислений, но и для фармакологических и медицинских целей. В геном микроорганизмов компьютера можно включить некоторую логическую схему, которая будет активизироваться при контакте с определенным веществом, другими клетками. Поместив, например, такое запрограммированное наноустройство в клетку человека, можно влиять затем на ее состояние, излечивая от различных болезней.

«Основная проблема, с которой сталкиваются создатели клеточных биокомпьютеров, – организация всех клеток в единую работающую систему. Сейчас в Лаборатории искусственного интеллекта Массачусетского технологического университета создана клетка, способная хранить на генетическом уровне 1 бит информации. Также разрабатываются технологии, позволяющие единичной бактерии отыскивать своих соседей, образовывать с ними упорядоченную структуру и осуществлять массив параллельных операций» [10].

Итак, сравнительно с кремниевыми процессорами, процессоры на основе ДНК имеют ряд бесспорных преимуществ. Во-первых, для них характерна более простая технология изготовления, которая не требует столь жестких условий (например, стерильная атмосфера), как при производстве полупроводников. Во-вторых, используется не бинарный, а тернарный код (тройки нуклеотидов), что при меньшем количестве шагов позволит перебрать большее число вариантов при анализе. В-третьих, биокомпьютеры отличает сверхвысокая производительность (до 1014 операций в секунду). Также, данные могут храниться с плотностью, в триллионы раз превышающей возможности оптических дисков. И, наконец, энергопотребление ДНК-компьютеров является исключительно низким.

Страницы: 1 2 3 4

Смотрите также

Дерматологические средства индивидуальной защиты
...

Причины перелома
  Непосредственными причинами переломов являются различные механические травмы. Это всевозможные удары, падения, наезд автотранспорта, огнестрельные ранения, насильственное вытаскивание зас ...

Инструментальная диагностика заболеваний щитовидной железы
УЗИ - один из базовых методов диагностики заболеваний щитовидной железы, поскольку он позволяет не только точно оценить объем щитовидной железы, но и получить информацию об изменениях паренхимы щит ...







www.medicinformer.ru - Copyright © - 2019